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Electromagnetic Theory of the Loosely Braided
Coaxial Cable: Part II—Numerical Results

DAVID A. HILL, SENIOR MEMBER, IEEE, ~ JAMES R. WAIT, FELLOW, IEEE

Mwacc—Tbe general modaf equation obtained in Part I is solved
numerically for the propagation cooslants of both the mono~dar and ldiar

modes. For tlte speciat ease of an M-filled cM% ordy one made is

SWpoti Nmfid results are afso presented for the surface transfer
irnpednrw of the shield wfd4 in gene~ depends on the propagation

eomtant, Tbe properties of the counterwound hefical shield are found to be
qmditatively simflar to those of the mddirectional beficaf shield.

I. INTRODUCTION

I

N A PREVIOUS analysis of a loosely braided coaxial

cable [1], an infinite set of linear equations for the

shield currents was derived. In this sequel, we utilize the

infinite set of equations to obtain numerical results for the

propagation constants of the propagating modes of the

cable. The properties of these modes are important in

utilizing coaxial cables for leaky feeder communications

[2].

We also present numerical results for the surface trans-

fer impedance of the cable shield. This quantity has been

commonly used to characterize the mean electromagnetic

properties of braided cable shields [3], [4], but usually its

value has been assumed or measured. Here we calculate

the surface transfer impedance in terms of the cable

parameters and the propagation constant.

The geometry of the loosely braided coaxial cable is

indicated in Fig. 1. The center conductor of radius a is

perfectly conducting, and the insulation of permittivity c

occupies the region a < p < Pw The external region, P > Po,

is free space with permittivity co, and the entire region

external to the center conductor and the shield wires has

magnetic permeability p. The shield consists of Q equally

spaced thin-wire helices with pitch angle +, and Q coun-

terwound helices with pitch angle –+. All shield wires

have radius c, and a planar development of the shield is

illustrated in Fig. 2 for Q =5.

Before dealing with the numerical problem, we in-

troduce a modification to the earlier analysis [1] in order
to improve numerical convergence. We also obtain ap-

proximate analytical expressions for the propagation con-

stant and the surface transfer impedance.
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Fig. 1. Perspective view of eounterwound heliees and planar develop-
ment of the cylindrical surface (drawn for Q= 1). The helicaf wires
have radius c.
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Fig. 2. Planar development of multi countemound heiices (drawn for
Q= 5).

II. MODIFIED MODAL EQUATION

In [1], the series impedance condition (30) that must be

satisfied at the helical wires was applied at the top of a

wire defined by the spiral, z = (p/27r)@ + c/sin~ and p=

PO) where P is the ~al period and standard Cylindrical
coordinates (p, O,Z) are employed. This resulted in the

infinite set of linear equations [1, eq. (49)] for the un-

known current coefficients Im of the helical wires. Since

the longitudinal electric field is assumed to be uniform

around the circumference of the helical wires, we are

actually free to apply the series impedance condition at
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any location on the helical wires, For later numerical

convenience, we choose the outside of the wire which is

defined by the spiral, z = (p/27r)@ and p =po+ c. Then [1,

eq. (49)] becomes

Q–1 ~

22 ‘mnexp(-i%)’mq=f) n=–w

co

“ (-’%%+.+X ‘2n+-m,n ‘W~=—~

(1)+ E$ilm,ocosaj = ZwZm

where E; is the primary field and Zw is the series imped-

ance of the helical wires. The factor exp( – in2zw/p sin+)

in [1, eq. (49)] has been eliminated by applying the imped-

ance condition at z = (p/27)@. The other change is tha< p.

in [1, eq. (49)] is replaced by PO+ c. Thus, R~,” and ~, ~

are now given by

Rm,n = – U:,n COS@m,n&[ Vm,n(po+ c)]

+ iOPOm,nS~*p$,.K~[ O.,.(PO+c)]

+ sin+
—nl%,n~m,n%[ %&o+ c)]po+c

(2)

&,n=-fi,_ncos@m,nIq%, -n(P,+ c)]

+ iqwn, _. Sin*~&~~ [ %, –.(Po+ c) ]

Sin@
– — npm, .nfm,n%[ %, -n(PO+ c)] (3)

po+c

where & is a modified Bessel function order n and the

remaining quantities are defined in [1].

The form of (1) can be simplified by employing the

following identity [1]:

where 1=0, ?l, ?2, ?3,. -. . Thus, the q summation in (1)

can be performed to yield

[

Q ,=~w&n,An+ ~ &n+m,.Ln
[=–co

n=lQ nz-lQ 1
+ E#3~,o= ZJMo (5)

To obtain the desired mode equation, we set the

primary field E; equal zero and rewrite (5) as
r ,

E7Rmn-a’m+i%fi2n+mn’2n+m=0“)
where (6) holds for m = O, t 1, t 2,, ● . . From the form of

the summations in (6), it is clear that the Fourier

coefficients 1~ are coupled only for m equal to integer

multiples of 2Q. A convenient finite system of 2P+ 1

equations in 2P+ 1 unknowns, where P is a positive

integer, is then obtained by truncating (6) as follows:

()

P–(m/2Q)

Sm– $ 1~+ ~ R2.+#z.+~=0 (7)
1= – P–(m/2Q)

n=IQ

where S~ = X?- _w,.-l~R~,. and m = O,

*2Q,*4Q,.”” , z 2PQ. In the matrix form, (7) is equiv-

alent to

I- 2PQ

[1

2P+1 I-2Q

by 10

2P+1 ID2~

.

12PQ

=[0]. (8)

The homogeneous system of equations in (8) has a

nontrivial solution only if the determinant, which is a

function of the unknown propagation constant PO, is zero.

Thus, the mode equation is symbolically written

[1

2P+1

det by = O (9)

2P+1

where the diagonal elements in the square matrix contain

the infinite sum SM. By employing a uniform asymptotic

expansion [5] for the Bessel functions in (2), Rn,. can be

shown to decay exponentially for large n in the reamer:

&,n-b(n)exp(- ncsin~tan*/pO) (10)

where b(n) is an algebraic function of n. When the match

point is taken on the top of the wire, ~,. has only an

algebraic decay for large n [1].

III. APPROXIMATE SOLUTION

Before proceeding to a numerical solution of (9), it is

useful to examine the special case of large Q and perfectly

conducting wires (i.%, ZW= O). In view of the exponential

decay of ~,. and R~,. for larger n, (6) can be written in

the following approximate form for m = O:

(Ro,o+lto,o)Zo=O. (11)

From (2), (3), and the previous results in [1], we find that

R =Aow0,0 , (12)

Consequently, the approximate mode equation is

Ro,o= O. (13)

This is identical to the approximate mode equation for the

case of unidirectional helices [6]. For lcopo and kop small,
(13) has a solution of the form [6]
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For + approaching zero, j30/ko approaches (t/cO)l/2 and

we clearly have the bifilar mode. On increasing ~,&

increases and the mode becomes slower.

Another mode is found numerically for flo/ko slightly

greater than unity, but we could find no analytical solu-

tion. This mode is clearly the monofilar mode that has the

character of an axial surface wave.

IV. SURFACE TRANSFER IMPEDANCE

The surface transfer impedance Z= is define as the ratio

of the averaged axial electric field at the shield to the

averaged axial shield current (proportional to the discon-

tinuity in Ho)

~zlp=poz== (15)
27PO[ F+lp=p; – H.$lp=pn 1°

The bar indicates that the averaging is carried out over z

(from O to p) and $ (from O to 27r). When this averaging is

carried out, only the m = n = O harmonics remain and Z=

is given by

Z~ = { E; – 2v;,~o,oKo(vo,opo) }

/{– idw,{ c.%,d.,o~:(%lpo) – % w%,,

. [I~(uo,opo)- [Io(uo,oa)/Ko(uo, oa)]

“%( UO,OPO)] } } (16)

where xto,o and Bo,o are given in [1].

For the usual case where Uo, Opo and uo,oa are small, the

small argument approximations for the modified Bessel

functions can be used to simplify (16)

E:+ 2&#0,01n (OO,OPO)
ZTE (17)

iti4~[ C#o,o – 6Bo,o/ln(240,0a) ] “

For the special case where the mode equation is satisfied,

we can set E: equal to zero and (17) further simplifies to

o~,o in (Oo,opo)
z+=

[ 1

(18)
u;, oln(oo,~o) ‘

i6d2r co—e
u;, Oln(pot a)

In order to gain some insight into the dependence of Z=

on pitch angle $, we can examine the case for large Q. If

the solution for PO in (14) is substituted into (18), then Z~

becomes

(19)

In many cases the surface transfer impedance is positive

and proportional to frequency. This has lead to the

following definition [3] for surface transfer inductance L=:

LT = ZT/(iti). (20)

For the special result given by (19), this yields a positive

real value of LT which is independent of frequency. For

the more general result of (16), LT becomes complex and

actually depends on both the frequency and the propaga-

tion constant.

Another quantity, often quoted for cable shields, is the

optical coverage C which is defined as the fraction of

metal cover of the shield area. For c small compared with

POas assumed in [11,it wouldbegivenb

(c= ‘c 2- ‘c - 2QC
mpoCos+ )

(21)
~Po Cos+ — ~PclC@s4’ “

From (21) we see that as + increases, the optical coverage

increases. However, from (19) or from the numerical

evaluation of (16), we find that the cable becomes more

leaky (larger IZ=l) as $ increases. This points up the fact

that optical coverage is not a good measure of cable

shielding for most cables [7].

V. NI.MERICAL I& SULTS

A computer program was written to solve the modal

equation (9) for the case of perfectly conducting helical

wires (ZW = 0). Since the structure is Iossless for ZW = O and

e real, we are interested in real values of 80 greater than k.

such that the fields decay for large p. The bisection

method [8] was used to solve (9), and the truncation effect

was examined by increasing P until the value of ~.

converged. In most cases this occurred for P =2, and thus

a 5 by 5 matrix was sufficient. The surface transfer

impedance Zt was calculated using the general expression

(16).

Except where indicated, the following parameters were

used: a= 1.5 mm, PO= 10 mm, and c =0.5 mm. In all cases

K was taken equal to the free space permeability I-Jo,In

Figs. 3–6, we show results for the special case c = Co, and

here only one mode was found.

In Fig. 3, the propagation constant /l. is shown for

various values of Q as a function of pitch angle ~ for a

frequency of 10 MHz. As expected, flo approaches k. for

small ~, and /30 decreases as the number of shield wires Q

increases. The dashed curve for large Q is obtained from

(14). In Fig. 4, the surface transfer inductance, LT =

ZT/(iti) (in nanohenrys/meter), is also shown as a func-

tion of +.

The frequency dependence of the propagation constant

is shown in Fig. 5 for ~ = 30°. For sufficiently low

frequencies, ~o/ k. is essentially independent of frequency

as predicted by the approximate result in (14), but this

idealization gradually fails as the frequency is increased.

Some frequency dependence also exists for LT in Fig. 6,

but it is less pronounced than in the case of the unidirec-

tional helical shield [6]. Also shown in Figs. 5 and 6 is the

result for the assumption of a constant current (P= O) on

the shield wires. This assumption which was adopted in an

earlier analysis by Casey [9] is seen to introduce a small

error.

In Figs. 7 – 10, results are shown for the case of a

dielectric insulation, e/Co =2.5. The propagation constant

of the bifilar mode is shown in Fig, 7, and /30a k for small

~ and large Q as expected. The propagation constant of

the monofilar mode is shown in Fig. 8, and PO approaches

k. for small+ and large Q.
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Fig. 3. Relative propagation constant ~O/ko as a function of pitch
angle for an air-filled cable at a frequency of 10 MHz.
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Fig. 4, Surface transfer inductance as a function of pitch angle.
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Fig. 5. Relative propagation constant as a function of frequency for an
air-filled cable.
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Fig. 6. Surface transfer inductance as a function of frequency.
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Fig, 7. Relative propagation constant of the bifilar mode of a dielec-
tric-fdled cable as a function of pitch angle.
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Fig. 8. Relative propagation constant of the monofilar mode of a
dielectric-filled cable as a function of pitch angle.
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Fig. 9. Surface transfer inductance of the bifilar mode as a function of
pitch angfe.
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Fig. 10. Surface transfer inductance of the monofilar mode
tion of pitch angte.

as a frmc-

The surface transfer inductance for the bifilar mode is

shown in Fig. 9. Since it actually becomes negative for

some values of ~, an inductive reactance is not always an

adequate representation for the transfer impedance. The

surface transfer impedance for the monofilar mode as

shown in Fig. 10 is substantially different from that of the

bifilar mode in Fig. 9. Such differences are to be expected

since Z~ is known to depend on the propagation constant

[10], [11].

In Figs. 11 and 12, the radius c of the helical wires is

made inversely proportional to the number of wires Q

such that the optical coverage is roughly equal for each Q

value. It is seen that ~0 and LT still decrease as Q is

increased, but not as rapidly as in Figs. 3 and 4 where c is

held constant. The conclusion is that a large number of

thin wires provides better shielding than a small number

of thick wires even though the optical coverage is the

same.

VI. CONCLUDING REMARKS

The modal equation for the propagation constant has

been solved analytically for large Q and numerically for

the general case. The propagation constant of the bifilar
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f = 10 MHz
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Fig. 11. Relative propagation constant as a function of pitch angfe for
an air-filfed cable. Wire radius c is made inversely proportional to Q
for a constant optical coverage<
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Fig. 12, Surface transfer inductaneo as a function of pitch angle. Wire
radius c is made inversely proportional to Q for a constant opticaf
coverage.

mode is close to the wave number of the insulation. On

the other hand, the propagation constant of the monofilar

mode is slightly greater than that of free space and it has

the character of a Goubau wave. Since there is no return

current path for the isolated cable in free space, the

monofilar mode takes on the character of a Goubau

mode. For the special case of an air-filled cable, only one

propagation mode is found.

The surface transfer inductance has been calculated

and is generally found to increase with increasing pitch

angle. The surface transfer impedance is different for the

bifilar and monofilar modes and depends in general on

the propagation constant. Optical coverage is found to be

a poor indicator of shielding, and a large number of thin

wires provides better shielding than a smaller number of

thicker wires.

The above conclusions are qualitatively similar to those

for the unidirectional helical shield [6]. The primary effect

of the counterwound helices is to increase the cable shield-
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ing. This generally results in smaller values of both the

propagation constant and the surface transfer inductance.
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Single and Multiaperature
Coupling Theory, Including

Explanation of Mutual Interactions

RALPH LEVY, FELLOW, IEEE

#@tWt-BStfW’S snudf apertureCOUPfing theory, modified by * for

- COOPffng~ h ~PKWa by fnchwfhg eorrecdon term ob-
tdned by averagfng the fields over the large aperture. Additionally, ioclu-

sfon of nonempfrieaf thknesa wrrection factors derived previously by
McDonald gfve coupffng formufas which result in Wxwe&af -o~
far muMa@ure couplers substantially in exd agreement with experi-

ment (cormdhg snmff dfserepancks previowly noted by the author in a
1968 paper). Tlds agreement fs now so close that it becomes possible both
to identify and explafn the mutuaf interaction effects between closely

_ RP* h mdbwerke couplers. It is ahmm that the mutuaf
interaction k due to contradhed onaf (or kwkward) waves fn the sec-

ondary JUQ so tlmt nudthperhw fnteractiom are manffeated as effrnina-
tion of the seff-interactfona of the individual apertures (sfnce the high

dlrectfvfty of typicaf multiaperture couplers fmpks negligible bxkward
wave amplitude).

I. INTRODUCTION

T HE THEORY OF microwave coupling by large aper-

tures has developed in a number of stages, originating

in Bethe’s small aperture coupling theory of 1943 [1], [2].

A major extension of Bethe’s work has been described by

Manuscript received June 1, 1979, revised November 2, 1979. This
paper was presented at the 1979 IEEE MTT-S Symposium, May 2, 1979,
Orlando, FL.

The author is with Microwave Development Laboratories, Inc.,
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Cohn in 1952 [3], and enabled the theory to be applied to

large apertures of finite thickness. Cohn recognized that a

coupling aperture between two waveguides has an equiv-

alent circuit representation involving lossless impedances,

which must therefore obey Foster’s reactance theorem.

Hence to take account of the aperture resonance, the

impedance was modified simply by inclusion of a factor

(1 –f*/j#), where ~ is frequency and & the resonant

frequency of the aperture. The effect of finite thickness

was taken into account by treating the aperture as a finite

length of waveguide beyond cutoff. However it was noted

that this thickness correction was somewhat empirical,

and “effective thickness” factors had to be included to

give reasonable agreement between theory and experi-

ment.

The Bethe-Cohn theory was applied to the analysis and

synthesis of inultiaperture waveguide directional couplers

by the author in 1968 [4]. It was shown to give excellent

results for predicting the directivity of multiaperture cou-

plers, and the coupling could be predicted to within 0.3

dB over most of a complete waveguide band. On the other

hand, at high frequencies, between j/& values of 1.6 and

1,8, the discrepancy in coupling increased gradually from

(typically) 0.3 dB to 0.7 dB, independently of the absolute
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