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Electromagnetic Theory of the Loosely Braided
Coaxial Cable: Part II—Numerical Results

DAVID A. HILL, SENIOR MEMBER, IEEE, AND JAMES R. WAIT, FELLOW, IEEE

Abstract—The general modal equation obtained in Part I is solved
numerically for the propagation constants of both the monofilar and bifilar
modes. For the special case of an air-filled cable, only one mode is
supported. Numerical results are also presented for the surface transfer
impedance of the shield which, in general, depends on the propagation
constant. The properties of the counterwound helical shield are found to be
qualitatively similar to those of the unidirectional helical shield.

I. INTRODUCTION

N A PREVIOUS analysis of a loosely braided coaxial

cable [1], an infinite set of linear equations for the
shield currents was derived. In this sequel, we utilize the
infinite set of equations to obtain numerical results for the
propagation constants of the propagating modes of the
cable. The properties of these modes are important in
utilizing coaxial cables for leaky feeder communications
[2].

We also present numerical results for the surface trans-
fer impedance of the cable shield. This quantity has been
commonly used to characterize the mean electromagnetic
properties of braided cable shields [3], [4], but usually its
value has been assumed or measured. Here we calculate
the surface transfer impedance in terms of the cable
parameters and the propagation constant.

The geometry of the loosely braided coaxial cable is
indicated in Fig. 1. The center conductor of radius a is
perfectly conducting, and the insulation of permittivity €
occupies the region a < p< p,. The external region, p > py,
is free space with permittivity ¢, and the entire region
external to the center conductor and the shield wires has
magnetic permeability u. The shield consists of Q equally
spaced thin-wire helices with pitch angle ¢, and Q coun-
terwound helices with pitch angle —14. All shield wires
have radius ¢, and a planar development of the shield is
iltustrated in Fig. 2 for @ =3.

Before dealing with the numerical problem, we in-
troduce a modification to the earlier analysis [1] in order
to improve numerical convergence. We also obtain ap-
proximate analytical expressions for the propagation con-
stant and the surface transfer impedance.
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Fig. 1. Perspective view of counterwound helices and planar develop-
ment of the cylindrical surface (drawn for @=1). The helical wires

have radius c.
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Fig. 2. Planar development of multi counterwound helices (drawn for

2=5).

II. MoODIFIED MODAL EQUATION

In [1], the series impedance condition (30) that must be
satisfied at the helical wires was applied at the top of a
wire defined by the spiral, z=(p/27)p+¢/siny and p=
po> Where p is the axial period and standard cylindrical
coordinates (p,,z) are employed. This resulted in the
infinite set of linear equations [1, eq. (49)] for the un-
known current coefficients I, of the helical wires. Since
the longitudinal electric field is assumed to be uniform
around the circumference of the helical wires, we are
actually free to apply the series impedance condition at
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any location on the helical wires. For later numerical
convenience, we choose the outside of the wire which is
defined by the spiral, z=(p/27)¢ and p=py+c. Then [1,
€q. (49)] becomes

-1

2 2 Rm,nexp(_im)lm

g=0 n=-—0c0 Q

2mn
+ 2 R2n+mnexp(_l Qq)12n+m

M

where E? is the primary field and Z,, is the series imped-
ance of the helical wires. The factor exp(— in2wc/psiny)
in [1, eq. (49)] has been eliminated by applying the imped-
ance condition at z=(p/27)é. The other change is that p,

+ E?3, gcosy=Z I,

in [1, eq. (49)] is replaced by py+c. Thus, R,, , and Rm n
are now given by
Rm,n__v COS\I/ m,n n[ m,n(p0+c)]
+u"p'v SlIl\IJP*,” r;[vm,n(p0+c)]
sin
B PrnKo[naloet )] Q)
ﬁ,”’"=—v _nCOS\I/P Kn[vm,—n(po+c)]
"'"'-’Iw _,,smz,b m,n r:[ m,—n(p0+c)]
_ siny
Po +c 13 —annKn[ m—n(p0+c)] (3)

where K, is a modified Bessel function order n and the
remaining quantities are defined in [1].

The form of (1) can be simplified by employing the
following identity [1]:

Senl=250)-(0 I o

where /=0, +1, +2, *3,---
can be performed to yield

. Thus, the ¢ summation in (1)

o0 0 N
Q ; 2 Rm,nlm+ 2 R2n+m,n12n+m
=00

I=-
n=I1Q n=IQ

+EPS, 0=2Z,1,. (5)

To obtain the desired mode equation, we set the
primary field Ef equal zero and rewrite (5) as

2 Rm,n_—é— Im+ 2 R2n+m,n12n+m=0 (6)
I=—o0 =—00
n=IQ n=1IQ

where (6) holds for m=0,+1,+2,+++. From the form of
the summations in (6), it is clear that the Fourier
coefficients I, are coupled only for m equal to integer
multiples of 2Q. A convenient finite system of 2P+1
equations in 2P+ 1 unknowns, where P is a positive
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integer, is then obtained by truncating (6) as follows:
z P~(m/20)
(Sm— _W')Im+ 2 R2n+m,n12n+m=0 (7)
Q 1=—P(m/20)
n=IQ
where S, =27 _,. .-,R,, and m=0,
+20Q,+4Q, -, £2PQ. In the matrix form, (7) is equiv-
alent to
I—ZPQ
2p+11]] T-20
by I, |=[0] 8)
2P+1|| ID,,
Lpg

The homogeneous system of equations in (8) has a
nontrivial solution only if the determinant, which is a
function of the unknown propagation constant B, is zero.
Thus, the mode equation is symbolically written

2P+1
by
2P+1

where the diagonal elements in the square matrix contain
the infinite sum S,,. By employing a uniform asymptotic
expansion [5] for the Bessel functions in (2), R,, , can be
shown to decay exponentially for large » in the manner:

Ry .~b(n)exp(—nesingtany /o) (10)

where b(n) is an algebraic function of n. When the match
point is taken on the top of the wire, R, , has only an
algebraic decay for large n [1].

I11.

Before proceeding to a numerical solution of (9), it is
useful to examine the special case of large Q and perfectly
conducting wires (i.e., Z,=0). In view of the exponential
decay of R,, , and ﬁm,n for larger n, (6) can be written in
the following approximate form for m=0:

(Roo+ RA0,0)10=0 (11)
From (2), (3), and the previous results in [1], we find that

det =0

©)

APPROXIMATE SOLUTION

Ry o= Rg\o,o~ (12)
Consequently, the approximate mode equation is

This is identical to the approximate mode equation for the
case of unidirectional helices [6]. For kyoy and kyp small,
(13) has a solution of the form [6]

Bo 1/2 . (1——(a2/pg))l/2tan2¢ /2
o () T Zinlpg/a)

. (14)
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For y approaching zero, 8,/ k, approaches (¢/ey)!/? and
we clearly have the bifilar mode. On increasing ,8,
increases and the mode becomes slower.

Another mode is found numerically for 8,/ k, slightly
greater than unity, but we could find no analytical solu-
tion. This mode is clearly the monofilar mode that has the
character of an axial surface wave.

Iv.

The surface transfer impedance Z, is define as the ratio
of the averaged axial electric field at the shield to the
averaged axial shield current (proportional to the discon-
tinuity in H)

SURFACE TRANSFER IMPEDANCE

Ezlp=p

0
T= — — . (15)
277'p0[ H¢|p=03 - H¢IP=PE]

The bar indicates that the averaging is carried out over z
(from 0 to p) and ¢ (from 0 to 27). When this averaging is
carried out, only the m=n=0 harmonics remain and Z,
is given by
Ly= { E?— 2U(%,vo,oKo(Uo,otoo) }
/ { - iw4’”Po{ Eovo,vo,oKé(Uo,opo) =€ By
: [16(“0,0Po) - [Io( “o,oa)/Ko(“o,oa)]
'K(;(uo, oPo)] } }

where 4, and By, are given in [1].

For the usual case where u, ooy and u; ga are small, the
small argument approximations for the modified Bessel
functions can be used to simplify (16)

- E?7+ 2”3, o4 o,01n (g,0P0)
T iwdn| egdo o= €Byo/In(ug08) |

For the special case where the mode equation is satisfied,
we can set EP equal to zero and (17) further simplifies to

(16)

(17)

7~ 05,010 (09,000) (18)
T .
il e — e vg,oln(vo,opo)
(4] 2 1
uy,010(po/ a)

In order to gain some insight into the dependence of Z,.
on pitch angle i, we can examine the case for large Q. If
the solution for B, in (14) is substituted into (18), then Z,
becomes

(19)

In many cases the surface transfer impedance is positive
and proportional to frequency. This has lead to the
following definition [3] for surface transfer inductance L,:

Ly=2Zr/(iw). (20)
For the special result given by (19), this yields a positive
real value of L, which is independent of frequency. For
the more general result of (16), L, becomes complex and
actually depends on both the frequency and the propaga-
tion constant.
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Another quantity, often quoted for cable shields, is the
optical coverage C which is defined as the fraction of
metal cover of the shield area. For ¢ small compared with
po as assumed in [1], it would be given by

C= QOc (2_ Qc . 2Qc
7Py COSY mpPeCosy | mpgcosy

2y

From (21) we see that as ¢ increases, the optical coverage
increases. However, from (19) or from the numerical
evaluation of (16), we find that the cable becomes more
leaky (larger |Z,|) as ¢ increases. This points up the fact
that optical coverage is not a good measure of cable
shielding for most cables [7].

V. NUMERICAL RESULTS

A computer program was written to solve the modal
equation (9) for the case of perfectly conducting helical
wires (Z,,=0). Since the structure is lossless for Z,=0 and
e real, we are interested in real values of B, greater than &,
such that the fields decay for large p. The bisection
method [8] was used to solve (9), and the truncation effect
was examined by increasing P until the value of B,
converged. In most cases this occurred for P=2, and thus
a 5 by 5 matrix was sufficient. The surface transfer
impedance Z, was calculated using the general expression
(16).

Except where indicated, the following parameters were
used: a=1.5 mm, p,=10 mm, and ¢=0.5 mm. In all cases
¢ was taken equal to the free space permeability y,. In
Figs. 3-6, we show results for the special case e=¢; and
here only one mode was found.

In Fig. 3, the propagation constant 8, is shown for
various values of @ as a function of pitch angle ¢ for a
frequency of 10 MHz. As expected, 8, approaches k, for
small ¢, and B, decreases as the number of shield wires Q
increases. The dashed curve for large Q is obtained from
(14). In Fig. 4, the surface tramnsfer inductance, L, =
Z;/(iw) (in nanohenrys/meter), is also shown as a func-
tion of .

The frequency dependence of the propagation constant
is shown in Fig. 5 for ¢ =30°. For sufficiently low
frequencies, B8,/ k, is essentially independent of frequency
as predicted by the approximate result in (14), but this
idealization gradually fails as the frequency is increased.
Some frequency dependence also exists for L, in Fig. 6,
but it is less pronounced than in the case of the unidirec-
tional helical shield [6]. Also shown in Figs. 5 and 6 is the
result for the assumption of a constant current (P=0) on
the shield wires. This assumption which was adopted in an
earlier analysis by Casey [9] is seen to introduce a small
€ITOr.

In Figs. 7—10, results are shown for the case of a
dielectric insulation, ¢/¢,=2.5. The propagation constant
of the bifilar mode is shown in Fig. 7, and S,k for small
¢ and large Q as expected. The propagation constant of
the monofilar mode is shown in Fig. 8, and 8, approaches
kg for small ¢ and large Q.
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Fig. 3. Relative propagation constant B,/k, as a function of pitch
angle for an air-filled cable at a frequency of 10 MHz.
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Fig. 5. Relative propagation constant as a function of frequency for an
air-filled cable.
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Fig. 7. Relative propagation constant of the bifilar mode of a dielec-
tric-filled cable as a function of pitch angle.
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Fig. 9. Surface transfer inductance of the bifilar mode as a function of
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Fig. 10. Surface transfer inductance of the monofilar mode as a func-
tion of pitch angle.

The surface transfer inductance for the bifilar mode is
shown in Fig, 9. Since it actually becomes negative for
some values of Y, an inductive reactance is not always an
adequate representation for the transfer impedance. The
surface transfer impedance for the monofilar mode as
shown in Fig. 10 is substantially different from that of the
bifilar mode in Fig. 9. Such differences are to be expected
since Z, is known to depend on the propagation constant
[10], [11].

In Figs. 11 and 12, the radius ¢ of the helical wires is
made inversely proportional to the number of wires Q
such that the optical coverage is roughly equal for each Q
value. It is seen that B8, and L, still decrease as Q is
increased, but not as rapidly as in Figs. 3 and 4 where ¢ is
held constant. The conclusion is that a large number of
thin wires provides better shielding than a small number
of thick wires even though the optical coverage is the
same.

VI. CONCLUDING REMARKS

The modal equation for the propagation constant has
been solved analytically for large Q and numerically for
the general case. The propagation constant of the bifilar
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Fig. 11. Relative propagation constant as a function of pitch angle for
an air-filled cable. Wire radius ¢ is made inversely proportional to Q
for a constant optical coverage.
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Fig. 12, Surface transfer inductance as a function of pitch angle. Wire
radius ¢ is made inversely proportional to Q for a constant optical
coverage.

mode is close to the wave number of the insulation. On
the other hand, the propagation constant of the monofilar
mode is slightly greater than that of free space and it has
the character of a Goubau wave. Since there is no return
current path for the isolated cable in free space, the
monofilar mode takes on the character of a Goubau
mode. For the special case of an air-filled cable, only one
propagation mode is found.

The surface transfer inductance has been calculated
and is generally found to increase with increasing pitch
angle. The surface transfer impedance is different for the
bifilar and monofilar modes and depends in general on
the propagation constant. Optical coverage is found to be
a poor indicator of shielding, and a large number of thin
wires provides better shielding than a smaller number of
thicker wires.

The above conclusions are qualitatively similar to those
for the unidirectional helical shield [6]. The primary effect
of the counterwound helices is to increase the cable shield-
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ing. This generally results in smaller values of both the
propagation constant and the surface transfer inductance.
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Improved Single and Multiaperature
Waveguide Coupling Theory, Including
Explanation of Mutual Interactions

RALPH LEVY, FELLOW, IEEE

Abstract—Bethe’s small aperture coupling theory, modified by Cohn for
large coupling apertures, is improved by including correction terms ob-
tained by averaging the fields over the large aperture. Additionally, inclu-
sion of nonempirical thickness correction factors derived previously by
McDonald give coupling formulas which result in theoretical predictions
for multiaperture couplers substantially in exact agreement with experi-
ment (correcting small discrepancies previously noted by the author in a
1968 paper). This agreement is now so close that it becomes possible both
to identify and explain the mutual interaction effects between closely
spaced apertures in multiaperture couplers. It is shown that the mutual
interaction is due to contradirectional (or backward) waves in the sec-
ondary arm, so that multiaperture interactions are manifested as elimina-
tion of the self-interactions of the individual apertures (since the high
directivity of typical multiaperture couplers implies negligible backward
wave amplitude).

I. INTRODUCTION

HE THEORY OF microwave coupling by large aper-
tures has developed in a number of stages, originating
in Bethe’s small aperture coupling theory of 1943 {1}, [2].
A major extension of Bethe’s work has been described by
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paper was presented at the 1979 IEEE MTT-S Symposium, May 2, 1979,
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Cohn in 1952 [3], and enabled the theory to be applied to
large apertures of finite thickness. Cohn recognized that a
coupling aperture between two waveguides has an equiv-
alent circuit representation involving lossless impedances,
which must therefore obey Foster’s reactance theorem.
Hence to take account of the aperture resonance, the
impedance was modified simply by inclusion of a factor
(1-£2/f3), where f is frequency and f, the resonant
frequency of the aperture. The effect of finite thickness
was taken into account by treating the aperture as a finite
length of waveguide beyond cutoff, However it was noted
that this thickness correction was somewhat empirical,
and “effective thickness” factors had to be included to
give reasonable agreement between theory and experi-
ment.

The Bethe—Cohn theory was applied to the analysis and
synthesis of multiaperture waveguide directional couplers
by the author in 1968 [4]. It was shown to give excellent
results for predicting the directivity of multiaperture cou-
plers, and the coupling could be predicted to within 0.3
dB over most of a complete waveguide band. On the other
hand, at high frequencies, between f/f, values of 1.6 and
1.8, the discrepancy in coupling increased gradually from
(typically) 0.3 dB to 0.7 dB, independently of the absolute
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